
Control Systems : Set 8 : Loopshaping (4) - Solutions
Prob 1 | For the closed-loop transfer function

T (s) =
ω2n

s2 + 2ζωns + ω2n

derive the following expression for the bandwidth ωBW of T (s) in terms of ωn and ζ

ωBW = ωn

√
1− 2ζ2 +

√
2 + 4ζ4 − 4ζ2

Assuming ωn = 1, use Matlab to plot ωBW for 0 < ζ < 1.

Bandwidth is defined as the frequency at which the magnitude drops to 1√
2

of the DC value.

|T (jωBW )| =
1√
2
=

ω2n
(jωBW )2 + 2ζωnjωBW + ω2n

Define x = ωBW /ωn

|T (jx)| =
1√
2
=

∣∣∣∣ 1

(jx)2 + 2ζjx + 1

∣∣∣∣
=

|1− x2 − ζx2j |
x4 + 4x2ζ2 − 2x2 + 1

=
|1− x2 − ζx2j |

x4 + 4x2ζ2 − 2x2 + 1

=

√
(1− x2)2 + (ζx2)2

x4 + 4x2ζ2 − 2x2 + 1

=

√
x4 + 4x2ζ2 − 2x2 + 1
x4 + 4x2ζ2 − 2x2 + 1

=
1√

x4 + 4x2ζ2 − 2x2 + 1
⇔
1

2
=

1

x4 + 4x2ζ2 − 2x2 + 1
2 = x4 + 4x2ζ2 − 2x2 + 1

The quadratic equation then gives the desired solution.
We plot the relationship between the damping ratio ζ and the normalized bandwidth of the
system below. Notice that a lower damping ratio results in a higher bandwidth - less robust
and more oscillation, but a faster response. To emphasize this point, we show below three
plots for ζ = 0.2, 1.0 and 2.0.
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Prob 2 | The Bode plot of the following system for K = 1 is given below

KG(s) =
K(s + 1)

s2(s + 30)2
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a) Determine the range of gains K that will yield a phase margin of at least 30◦.

b) What is the maximum possible closed-loop bandwidth that satisfies PM ≥ 30◦?

c) Use Matlab to confirm your finding.

A phase margin of 30◦ requires that the phase is larger than −150◦. We see from the Bode
plot that this happens in the frequency range of 0.7 < ω < 15.
The corresponding gains at these frequencies are G(j0.7) = −50dB and G(j15) = −84dB,
corresponding to and allowed range of gains

50dB ≈ 300 < K < 16, 000 ≈ 84dB

In this case, the bandwidth is larger for larger values of K, so the maximum crossover
frequency is ω = 15 for a gain of K = 16, 000. The resulting bandwidth will be within a
factor of two of this, and if we compute it in Matlab, we will see that it is 25rad/sec.



Prob 3 | Design a lead compensator Dc(s) with unity DC gain so that PM ≥ 40◦ using Bode plot sketches,
then verify your design using Matlab. What is the approximate bandwidth of the system?

G(s) =
5

s(s + 1)(s/5 + 1)

We first sketch a straight-line bode plot approximation.

−120
−100
−80
−60
−40
−20
0

20

40

2 · 100

M
ag

ni
tu

de
(d

B)

10−2 10−1 100 101 102
−270

−225

−180

−135

−90

2
Frequency rad/sec

Ph
as

e
(d

eg
)

We notice that the phase is approximately −180◦ when the gain is 0dB, which occurs
around 2rad/sec and which implies that our phase margin is approximately 0◦. This tells
us that we need to add 40◦ of phase at 2rad/sec .
Choose α to give an additional 60◦ to be safe, and ωmax at 2r/s

α =
1− sin 60◦

1 + sin 60◦
= 0.07

ωmax = 2 =
1

TD
√
α

→ TD = 1.9



The resulting controller is then

Dc(s) =
1.9s + 1

0.13s + 1

This should give us a phase margin of around 40◦ and a bandwidth a little larger than 2r/s .
However, if we check this with Matlab, we see that we get a PM of 13.8◦ and a bandwidth
of 8r/s . This is happening because the pole at 5r/s is causing our phase to drop at our new
crossover frequency. The solution to this is to move ωmax a little to the right, say around
ωmax = 5− 10r/s .
We try again with ωmax = 5, which gives the control law

Dc(s) =
0.76s + 1

0.053s + 1

which results in a phase margin of 42.4◦ and a bandwidth of 5.6r/s .



Prob 4 | The inverted pendulum has a transfer function given by

G(s) =
1

s2 − 1

a) Design a lead compensator to achieve a PM of 30◦ and a bandwidth around 1r/s using a
Bode plot sketch, then verify and refine your design using Matlab.

b) Could you obtain the frequency response of this system experimentally?

The open-loop system has a RHP pole at 1, and so doing experiments on the open-loop
system will result in unstable behaviour.

We first sketch the bode plot
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We see that the phase everywhere is −180◦. Therefore, to get a phase margin of 30◦, we
need a phase increase of 30◦

α =
1− sin 30◦

1 + sin 30◦
=
1

3

We just place the crossover at ωmax = 1

TD =
1√
α
=
√
3



This gives the control law

Dc(s) = K

√
3s + 1

s/
√
3 + 1

choose the gain K so that the crossover frequency is 1r/s

|Dc(1j)G(1j)| =
∣∣∣∣K 1

(1j)2 − 1 ·
√
3j + 1

j/
√
3 + 1

∣∣∣∣ = 1
⇒ K =

2√
3

The control law is then

Dc(s) =
2√
3
·
√
3s + 1

s/
√
3 + 1

The bode plot of Dc(s)G(s) is shown below, which has a phase margin of 30◦ and a crossover
frequency of 1r/s .
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Prob 5 | The frequency response of a plant in a unity-feedback configuration is sketched in the figure
below. Assume that the plant is open-loop stable and minimum-phase.

6117

Figure 6.99: Magnitude frequency response for Problem 41

(a) Problems and Solutions for Section 6.5

41. The frequency response of a plant in a unity feedback conÖguration is
sketched in Fig. 6.99. Assume the plant is open-loop stable and minimum
phase.

(a) What is the velocity constant Kv for the system as drawn?

(b) What is the damping ratio of the complex poles at ! = 100?

(c) What is the PM of the system as drawn? (Estimate to within !10o.)

Solution :

(a) From Fig. 6.99,

Kv = lim
s!0

sG = jLow frequency asymptote of G(j!)j!=1 = 100)

(b) Let

G1(s) =
1

!
s
!n

"2
+ 2&

!
s
!n

"
+ 1

For the second order system G1(s),

jG1(j!)j!=1 =
1

2&
(1)
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a) What is the velocity constant Kv for the system as drawn?

The slope at low frequency is −20dB/dec, and therefore the system is Type 1. At low
frequencies, the transfer function will approximately be

G(jω) ≈
Kv
jω

From the plot at ω = 1, we see that Kv = 100

b) What is the damping ratio of the complex poles at ω = 100?

The damping ratio is responsible for the size of the resonance peak at ω = 100, which
we estimate from the figure to be about −20/3 ≈ 6.5dB.
Consider the magnitude of a second order system evaluated at the natural frequency:

G(s) =
1(

s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

|G(jωn)| =
1

2ζ

From which we can estimate the damping ratio

1

2ζ
= 106.5/20 ⇔ ζ = 0.24

c) Estimate the PM of the system as drawn. (Hint: Bode phase-gain relationship)



Since the plant is a minimum phase system, we can apply Bode’s approximate gain-
phase relationship.
At crossover, we have a slope of −40dB/dec, which implies a phase of −180◦ and a
phase margin very close to zero.


