Control Systems : Set 8 : Loopshaping (4) - Solutions

Prob 1 | For the closed-loop transfer function
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derive the following expression for the bandwidth wgy of T(s) in terms of w, and ¢

wBW:wn\/1—2C2+ 2+4C4—4C2
Assuming w, = 1, use Matlab to plot wgy for 0 < ¢ < 1.

Bandwidth is defined as the frequency at which the magnitude drops to —= of the DC value.
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The quadratic equation then gives the desired solution.
We plot the relationship between the damping ratio ¢ and the normalized bandwidth of the
system below. Notice that a lower damping ratio results in a higher bandwidth - less robust

and more oscillation, but a faster response. To emphasize this point, we show below three
plots for ¢ = 0.2, 1.0 and 2.0.
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Prob 2 | The Bode plot of the following system for K = 1 is given below
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a) Determine the range of gains K that will yield a phase margin of at least 30°.
b) What is the maximum possible closed-loop bandwidth that satisfies PM > 30°7

¢) Use Matlab to confirm your finding.

A phase margin of 30° requires that the phase is larger than —150°. We see from the Bode
plot that this happens in the frequency range of 0.7 < w < 15.

The corresponding gains at these frequencies are G(j0.7) = —50dB and G(j15) = —84dB,
corresponding to and allowed range of gains

50dB ~ 300 < K < 16,000 ~ 84dB

In this case, the bandwidth is larger for larger values of K, so the maximum crossover
frequency is w = 15 for a gain of K = 16,000. The resulting bandwidth will be within a
factor of two of this, and if we compute it in Matlab, we will see that it is 25rad/sec.




Prob 3 | Design a lead compensator D.(s) with unity DC gain so that PM > 40° using Bode plot sketches,
then verify your design using Matlab. What is the approximate bandwidth of the system?
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We first sketch a straight-line bode plot approximation.
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We notice that the phase is approximately —180° when the gain is 0dB, which occurs
around 2rad/sec and which implies that our phase margin is approximately 0°. This tells
us that we need to add 40° of phase at 2rad/sec.

Choose a to give an additional 60° to be safe, and wmax at 2r/s
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The resulting controller is then
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This should give us a phase margin of around 40° and a bandwidth a little larger than 2r/s.
However, if we check this with Matlab, we see that we get a PM of 13.8° and a bandwidth
of 8r/s. This is happening because the pole at 5r/s is causing our phase to drop at our new
crossover frequency. The solution to this is to move wmax a little to the right, say around
Wmax = 5 — 10r/s.

We try again with wmax = 5, which gives the control law
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which results in a phase margin of 42.4° and a bandwidth of 5.6r/s.



Prob 4 | The inverted pendulum has a transfer function given by

1

G(s) = s2—1

a) Design a lead compensator to achieve a PM of 30° and a bandwidth around 1r/s using a
Bode plot sketch, then verify and refine your design using Matlab.

b) Could you obtain the frequency response of this system experimentally?

The open-loop system has a RHP pole at 1, and so doing experiments on the open-loop
system will result in unstable behaviour.

We first sketch the bode plot

O T T T T T ] T T T T T T TT] T T T 11
—

/

—20

T
|

Magnitude (dB)
IS
(@]
T
|

—60

_80 | T | | L1

T T T 1T T T T T T T T T 1T T T T 11

—180

Phase (deg)

L L] L T
1072 1071 10° 10t 102
Frequency rad/sec

We see that the phase everywhere is —180°. Therefore, to get a phase margin of 30°, we
need a phase increase of 30°

o 1-sin30° 1
" 1+4sin30° 3

We just place the crossover at wmax = 1




This gives the control law
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choose the gain K so that the crossover frequency is 1r/s

Dc(s) =K
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The control law is then
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The bode plot of D.(s)G(s) is shown below, which has a phase margin of 30° and a crossover

frequency of 1r/s.
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Prob 5 | The frequency response of a plant in a unity-feedback configuration is sketched in the figure
below. Assume that the plant is open-loop stable and minimum-phase.
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a) What is the velocity constant K, for the system as drawn?

c)

The slope at low frequency is —20dB/dec, and therefore the system is Type 1. At low
frequencies, the transfer function will approximately be
Ky

Glw) ~ 5

From the plot at w = 1, we see that K, = 100

What is the damping ratio of the complex poles at w = 1007

The damping ratio is responsible for the size of the resonance peak at w = 100, which
we estimate from the figure to be about —20/3 =~ 6.5dB.

Consider the magnitude of a second order system evaluated at the natural frequency:
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From which we can estimate the damping ratio
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Estimate the PM of the system as drawn. (Hint: Bode phase-gain relationship)



Since the plant is a minimum phase system, we can apply Bode’s approximate gain-
phase relationship.

At crossover, we have a slope of —40dB/dec, which implies a phase of —180° and a
phase margin very close to zero.



